

DO-003-1104009

Seat No. _____

M. Sc. (Sem. IV) Examination

March / April - 2022

Inorganic Chemistry: C(I)-403

(Bonding in Complexes)

Faculty Code: 003

Subject Code: 1104009

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) Answer all questions.

- (2) All questions carry equal marks.
- 1 Answer the following: (any seven)

14

- (a) Discuss the magnetic moments of Ni⁺² complexes.
- (b) Explain J-J coupling.
- (c) What is spin orbit coupling?
- (d) Determine $S, M_L, L.M_L$ and J in d^3 configuration.
- (e) Discuss the effect of spin orbit coupling on E terms.
- (f) Give the use of Tanabe-Sugano diagram.
- (g) Explain the splitting of d-orbital in Octahedral geometry.
- (h) Name all the Racah Parameters with symbols and use.
- (i) Give the equation to find out the normalized solution for $\Theta_{(\theta)}$ equation.
- (i) What is hole formalism?
- $2 \qquad \text{Answer the following : (any } two)$

14

- (a) Find out the ground state terms for d², d⁹ configurations and calculate total multiplicity for each.
- (b) What are Stepup and Stepdown operators? Derive L < 3, -2 >, from L < 3, -1 >.
- (c) Construct the correlation diagram for d² in Oh weak field and strong Field.

3 Answer the following: (any two)

14

- (a) Write note on Jahn-Teller effect.
- (b) Show the effect of V_{oct} on θ part $<m/x^4+y^4+z^4/m> = 5/7~r^4~when~m=m'\pm 0~.$
- (c) Explain the Tanabe-Sugano diagram for d⁴ and d⁵ configurations.
- (d) Show that $P_I \cos \theta = 1/2(5\cos^3 \theta 3\cos \theta)$, where I = 3.
- 4 Answer the following:

14

- (a) Show that $\langle m/x^4+y^4/m'\rangle = 1/8 r^4 \sin^4\theta zero$, where $m=m'\pm 4$.
- (b) Calculate energy of the integral $\langle \phi_2 \phi_1 | V_{oct} | \phi_2 \phi_1 \rangle$, where $\langle \phi_1 | V_{oct} | \phi_1 \rangle = -4Dq$ and $\langle \phi_2 | V_{oct} | \phi_2 \rangle = Dq$.
- 5 Answer the following:

14

Derive the formula $V_{oct}=6~Ze^2/a+\left(X^4+Y^4+z^4-3/5r^4\right)$ in Oh field.

OR

5 Answer the following:

14

- (a) Show that the value of $P_l^{|m|}(\cos\theta) = 1$ where I = 0, m = 0.
- (b) Show that $P_l \cos \theta = 1/2(5\cos^2 \theta 1)$, where I = 2.